GLTSCR2 promotes the nucleoplasmic translocation and subsequent degradation of nucleolar ARF
نویسندگان
چکیده
The alternative reading frame protein (p14ARF/ARF) is a key determinant of cell fate, acting as a potent tumor suppressor through a p53/MDM2-dependent pathway or promoting apoptosis in a p53-independent manner. The ARF protein is mainly expressed in the nucleolus and sequestered by nucleophosmin (NPM), whereas ARF-binding proteins, including p53 and MDM2, predominantly reside in the nucleoplasm. This raises the question of how nucleolar ARF binds nucleoplasmic signaling proteins to suppress tumor growth or inhibit cell cycle progression. GLTSCR2 (also known as PICT-1) is a nucleolar protein involved in both tumor suppression and oncogenesis in concert with p53, NPM, and/or MYC. Here, we show that GLTSCR2 increases nucleoplasmic ARF translocation and its degradation. Specifically, GLTSCR2 bound to ARF, and GLTSCR2-ARF complexes were released to the nucleoplasm, where GLTSCR2 increased the binding affinity of ARF for ULF/TRIP12 (a nucleoplasmic E3-ubiquitin ligase of ARF) and enhanced ARF degradation through the polyubiquitination pathway. Our results demonstrate that nucleolar/nucleoplasmic GLTSCR2 is a strong candidate for promoting the subcellular localization and protein stability of ARF.
منابع مشابه
GLTSCR2 is an upstream negative regulator of nucleophosmin in cervical cancer
Nucleophosmin (NPM)/B23, a multifunctional nucleolar phosphoprotein, plays an important role in ribosome biogenesis, cell cycle regulation, apoptosis and cancer pathogenesis. The role of NPM in cells is determined by several factors, including total expression level, oligomerization or phosphorylation status, and subcellular localization. In the nucleolus, NPM participates in rRNA maturation to...
متن کاملNucleolar stress induces ubiquitination-independent proteasomal degradation of PICT1 protein.
The nucleolar protein PICT1 regulates tumor suppressor p53 by tethering ribosomal protein L11 within the nucleolus to repress the binding of L11 to the E3 ligase MDM2. PICT1 depletion results in the release of L11 to the nucleoplasm to inhibit MDM2, leading to p53 activation. Here, we demonstrate that nucleolar stress induces proteasome-mediated degradation of PICT1 in a ubiquitin-independent m...
متن کاملThe nucleolar protein GLTSCR2 is required for efficient viral replication
Glioma tumor suppressor candidate region gene 2 protein (GLTSCR2) is a nucleolar protein. In the investigation of the role of GLTSCR2 that played in the cellular innate immune response to viral infection, we found GLTSCR2 supported viral replication of rhabdovirus, paramyxovirus, and coronavirus in cells. Viral infection induced translocation of GLTSCR2 from nucleus to cytoplasm that enabled GL...
متن کاملAKT regulates NPM dependent ARF localization and p53mut stability in tumors
Nucleophosmin (NPM) is known to regulate ARF subcellular localization and MDM2 activity in response to oncogenic stress, though the precise mechanism has remained elusive. Here we describe how NPM and ARF associate in the nucleoplasm to form a MDM2 inhibitory complex. We find that oligomerization of NPM drives nucleolar accumulation of ARF. Moreover, the formation of NPM and ARF oligomers antag...
متن کاملDNA damage disrupts the p14ARF-B23(nucleophosmin) interaction and triggers a transient subnuclear redistribution of p14ARF.
The p14 alternate reading frame (ARF) tumor suppressor plays a central role in cancer by binding to mdm2 (Hdm2 in humans) and enhancing p53-mediated apoptosis following DNA damage and oncogene activation. It is unclear, however, how ARF initiates its involvement in the p53/mdm2 pathway, as p53 and mdm2 are located in the nucleoplasm, whereas ARF is largely nucleolar in tumor cells. We have used...
متن کامل